![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
|
Games and Fun Stuff | Feedback | Meeting Forum |
|
|||||
Main Page FizziCalc Intermediate ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Advanced Cool Topics Reference Search Games and Fun Stuff Meeting Forum Physics Links |
Return to the Intermediate Level Page. ![]() It turns out that magnetic force arises from moving electric charges. If you place a compass (which has a magnetic needle) near a wire and then put current through that wire, the compass needle will align itself perpendicular to the wire. The magnetism in a magnet is due to the motion of electrons in the atoms of the magnet. ![]() This is your first right hand rule. To find the direction of the force, take your right hand and point your thumb toward the direction of current. Then take your four other fingers and point them in the direction of the B field. The force should come up out of your palm. If you are working with a negative current flow, then you would switch the direction of the positive current flow and use your left hand to find the force. Like an electric field, magnetic field strength can be measured by the concentration of the lines of force in a specific region. These lines of force can also be called magnetic flux lines. The unit for measuring the number of flux lines is the weber (Wb). Flux density is the number of flux lines in a given area, and is measured with a unit called the tesla (T), which equals one Wb/m2. The B field strength is similar to the E field strength in an electric field. Magnetic Field InteractionJust like electric charges, magnetic fields of poles also interact to cause poles to repel or attract.Same Poles (click on the illustration for a VRML model): ![]() Opposite Poles (click on the illustration for a VRML model): ![]() You can see how similar they are to the electric fields of point charges in the illustrations above. Fields Around Currents![]() Use your right hand and point your thumb in the direction of the positive current flow. Next, take your four other fingers and curl them around. The circle that those fingers make is the direction of the B field around the wire. Again, if you are dealing with negative current flow, use your left hand and point your thumb in the direction of negative current flow. If you put a compass nearby the wire, the compass needle will align itself with the direction of the B field. ![]() Using your right hand, take your four fingers and curl them around in the direction of positive charge current around the coils. Stick your thumb out and that should be the direction of the B field inside the solenoid and also the direction of the north pole. Again, for a negative current flow, use your left hand. Electromagnetic InductionIf a wire is moved through a magnetic field so that it cuts across magnetic flux lines, the charges in the conductor will be acted upon by the magnetic force. This force will move the charges towards one side of the wire. Because of this, a potential difference between the ends of the conductor will occur. This potential difference is induced by the magnetic field.In many power plants, huge rotating magnets make wires cut across their flux lines, generating the electricity that you get at home. Electromagnetic RadiationOscillating electric charges will produce changing electric and magnetic fields that radiate outward into the surround space in the form of waves. These waves are called electromagnetic waves. Visible light is an electromagnetic wave. The entire electromagnetic spectrum includes (listed in order of high energy/frequency to low energy/frequency) gamma rays, x-rays, ultraviolet, visible light, infrared, microwaves, and radio waves.![]() ![]() |
||||||||
Created by TQ Team 16600: |
![]() |
E-mail us! |
|||||||
Team Coaches: |
![]() |